##plugins.themes.bootstrap3.article.main##

The pH and functional properties: water and oil absorption capacity, bulk density, solubility, swelling power and foaming capacity of tigernut and cowpea flour blends were determined. The flour blends were coded with the letters B, C, D, E, F, G and H for cowpea flour substitutions of 5, 10, 15, 20, 30, 40 and 50 % respectively. For comparison sample A1, A2 and A3 representing 100 % of wheat, tigernut and cowpea respectively, were also evaluated. Standard methods were used for all the analysis. pH of the flour samples varied significantly (P ≤ 0.05) from 5.60-6.23 for sample B (5 % cowpea flour substitution) and A2 (100% tiger nut flour) respectively. Water and oil absorption capacity varied significantly (P ≤ 0.05) from 1.00-2.90 ml/g and 0.39-1.38 ml/g respectively. Sample A1 (100% wheat flour) and Sample B (5% Cowpea: 95% tigernut flour) was significantly (P ≤ 0.05) the highest in water absorption capacity while sample A1 (% wheat flour) had the highest oil absorption capacity. Bulk density varied from 0.58 - 0.84 g/cm3. Although Cowpea flour (sample A3) had the highest bulk density, there was significant (P ≤ 0.05) decrease with increase in cowpea substitution. Swelling power and solubility ranged from 0.08-6.74 g/g and 8.00–67.35 % respectively. Sample A1 (% wheat flour) had significantly (P ≤ 0.05) the highest solubility and swelling power while Sample A3 (% cowpea flour) had the least. The functional properties of the tigernut-cowpea composite flour were comparable with that of the wheat flour, except for the swelling power that was significantly (P ≤ 0.05) higher for the wheat flour. The result showed that the composite tigernut-cowpea flour can be good alternative in the production of bakery products that would not require much swelling.

References

  1. M. A. Idowu, A. A. Adeola, E. K. Oke, A. J. Amusa and S. A. Omoniyi, “Functional and pasting properties of wheat/tigernut pomace flour blends and sensory attributes of wheat/tigernut pomace flour meat pie,” Croat. J. Food Sci. Technol., vol. 11, no.1, pp. 30-36, 2019.
     Google Scholar
  2. E. L. Bamishaiye and M. O. Bamishaiye, “Tigernut as a plant, its derivatives and benefits,” Afri. J. Food Agric Nutri. Develop., vol. 11, no. 5, pp. 5157-5170, 2011.
     Google Scholar
  3. Y. Coşkuner, R. Ercan, E. Karababa and A. N. Nazlican, “Physical and chemical properties of chufa (Cyperus esculentus L) tubers grown in the Çukurova region of Turkey,” J. Sci. Food Agric., vol. 82, no. 6, pp.625-631, 2002.
     Google Scholar
  4. S. Lombardo, G. Pandino and G. Mauromicale, “Nutritional and sensory characteristics of ‘‘early’’ potato cultivars under organic and conventional cultivation systems,” Food Chem., vol. 133, no. 4, pp. 1249–54, 2012.
     Google Scholar
  5. I. Murniece, D. Karklina, R. Galoburda, D. Santare, I. Skrabule and H.S. Costa, “Nutritional composition of freshly harvested and stored Latvian potato (Solanum tuberosum L.) varieties depending on traditional cooking methods,” J Food Compost Anal., vol. 24, pp. 699–710. 2011.
     Google Scholar
  6. E. R. Chukwuma, N. Obioma and O. I. Cristopher, “The phytochemical composition and some biochemical effects of Nigerian tigernut (Cyperus esculentus L.) tuber,” Pak J Nutr., vol. 9, n. 7, pp. 709–15. 2010.
     Google Scholar
  7. J. A. Adejuyitan, E. T. Otunola, E. A. Akande, I. F. Bolarinwa and F. M. Oladokun, “Some physicochemical properties of flour obtained from fermentation of tigernut (Cyperus esculentus) sourced from a market in Ogbomoso, Nigeria,” Afr. J. Food Sci., vol. 3, pp.51–5, 2009.
     Google Scholar
  8. O. Borges, B. Goncalves, L. Sgeoeiro, P. Correia and A. Silva, “Nutritional quality of chestnut cultivars from Portugal,” Food Chem., vol. 106, pp. 976–84, 2008.
     Google Scholar
  9. M. A. Belewu and K. Y. Belewu, “Preparation of Kunnu from unexploited rich food source: Tiger nut (Cyperus esculentus),” Pak. J. Nutr., vol. 7, pp. 109-111, 2007.
     Google Scholar
  10. P. F. Ayeh-Kumi, P. B. Tetteh-Quarcoo, K. O. Duedu, A. S. Obeng, K. Addo-Osafo, S. Mortu and R. H. Asmah, “A survey of pathogens associated with Cyperus esculentus L (tiger nuts) tubers sold in a Ghanaian city,” BMC Res Notes., vol. 7, pp. 343, 2014. https://doi.org/10.1186/1756-0500-7-343.
     Google Scholar
  11. M. J. Cantatejo, “Analysis of volatile earthalmond (Cyperus esculentus L.),” J. Agri. Food Chem., vol. 45, pp. 1853-1860. 1997.
     Google Scholar
  12. B. B. Singh, J. D. Ehlers, B. Sharma and F. R. Freire Filho, “Recent progress in cowpea breeding,” In C. A. Fatokun, S.A. Tarawali, B. B. Singh, P.M. Kormawa & M. Tamo (Eds), Challenges and opportunities for enhancing sustainable cowpea production. Ibadan, Nigeria: Proceedings of the World Cowpea Conference III held at the International Institute of Tropical Agriculture (IITA). IITA, Ibadan, Nigeria. 4–8 September 2000, pp. 22–40.
     Google Scholar
  13. O. Boukar, N. Belko, S. Chamarthi, A. Togola, J. Batieno, E. Owusu, M. Haruna, S. Diallo, M. L. Umar, O. Olufajo and C. Fatokun, “Cowpea (Vigna unguiculata): Genetics, genomics and breeding,” Plant Breeding, vol. 138, pp. 415–424, 2019. DOI: 10.1111/pbr.12589.
     Google Scholar
  14. A.E. Hall, N. Cisse, S. Thiaw and H. O. A. Elawad, “Development of cowpea cultivars and germplasm by the Bean/Cowpea CRSP,” Field Crops Res., vol. 82, no. 2-3., pp. 103-134, 2003.
     Google Scholar
  15. B. B. Singh, O. L. Chambliss and B. Sharma, “Recent advances in cowpea breeding,” In B. B. Singh, D. R. Mohan Raj, K. E. Dashiell & L. E. N. Jackai (Eds.), Advances in cowpea research. Co-publication of IITA and JIRCAS, IITA. Ibadan, Nigeria. pp. 30–49, 1997.
     Google Scholar
  16. A. C. Uwaegbute, C. Iroegbu and O. Eke, “Chemical and sensory evaluation of germinated cowpeas (Vigna unguiculata) and their products,” Food Chem., vol. 68, pp. 141-146. 2000.
     Google Scholar
  17. R. D. Phillips, K. H. McWatters, M. S. Chinannan, Y. Hung, L. R. Beuchat, S. Sefa-Dedeh, E. Saki-Dawson, P. Ngoddy, D. Nnanyelugo, J. Enwere, N. S. Komey, K. Liu, Y. Mensa-Wilmot, I. Nnanna, C. Okeke, W. Prinyawiwatkul and F. K. Saalia, “Utilization of cowpeas for human food,” Field Crops Res., vol. 82, pp. 193–213, 2003.
     Google Scholar
  18. M. Serdaroglu, G. Y. Turp and K. Abrodimov, “Quality of low-fat meatballs containing legume flours as extenders,” Meat Sci., vol. 70, no.1, pp. 99-105, 2005.
     Google Scholar
  19. S. Chandra, S. Singh and D. Kumari. “Evaluation of functional properties of composite flours and sensorial attributes of composite flour biscuits,” J. Food Sci. Technol., vol. 52, no. 6, pp. 3681–3688, 2015. https://doi.org/10.1007/s13197-014-1427-2.
     Google Scholar
  20. C. G. Awuchi, V. S. Igwe and C. K. Echeta, “The functional properties of foods and flours In. J. Adv. Acad. Res. Sci. Technol. Engineer., vol. 5, no. 11, pp.136-160, 2019.
     Google Scholar
  21. Y. E. E. Madode, M.J. Nout, B. Evert-Jan, L. Anita, H. Djidjoho and B. Martinus, “Enhancing the digestibility of cowpea (Vigna unguiculata) by traditional processing and fermentation,” Lebensmittel-Wissenschaft und-Technologie., vol. 54, pp. 186-193. 2013. 10.1016/j.lwt.2013.04.010.
     Google Scholar
  22. J. A. Adejuyitan, "Tigernut processing: Its food uses and health benefits," Am. J. Food Technol., vol. 6, pp. 197-201, 2011.
     Google Scholar
  23. AOAC. Official methods of analysis, Association of official analytical chemist 19th ed, Washington D.C., USA. 2012.
     Google Scholar
  24. C. M. F Mbofung, Y. N. Abuobakar, A. Njintang, A. Boubak and F. Balaam, “Physico-chemical and functional properties of six varietes of Taro (Colocasia esculenta L.schott) flour,” J. Food Technol., vol. 4, no. 2, pp. 135-142, 2006.
     Google Scholar
  25. J. A. Ayo, O. E. Adedeji and G. Ishaya, “Phytochemical composition and functional supported by properties of flour produced from two varieties of tigernut (Cyperus esculentus),” FUW Trends Sci. Technol. J., vol. 1, no. 1, pp 261-266, 2015.
     Google Scholar
  26. K. Narayana and R. M. S. Narsinga (1982). Functional properties of raw and heat processed winged bean (Psophocarpus tetragonolobus) flour. J. Food Sci. 42:534-538.
     Google Scholar
  27. I.F. Bolarinwa, S.A. Olaniyan, L.O Adebayo and A.A. Ademola, “Malted sorghum-soy composite flour: preparation, chemical and physicochemical properties,” J. Food Proc. Technol., vol. 6, no. 8, 2015. DOI: 10.4172/2157-7110.1000467.
     Google Scholar
  28. B. I. O Ade-Omowaye, B. A. Akinwande, I. F. Bolarinwa and A.O. Adebiyi, “Evaluation of tigernut (Cyperus esculentus) –wheat composite flour and bread,” Afr. J. Food Sci., vol. 2, pp. 087-091, August 2008.
     Google Scholar
  29. A. Oladele and J. Aina, “Chemical composition and functional properties of flour produced from two varieties of tigernut (Cyperus esculentus),” Afr. J. Biotechnol., vol. 6, no. 21, pp. 2473–2476, 2007.
     Google Scholar
  30. F. Appiah, J. Y. Asibuo and P. Kumah, “Physicochemical and functional properties of bean flours of three cowpea (Vigna unguiculata L. Walp) varieties in Ghana,” Afr. J. Food Sci., vol. 5, no. 2, pp. 100 - 104 February 2011.
     Google Scholar
  31. O.H. Moutaleb, I. Amadou, T. Amza and M. Zhang, “Physico-functional and sensory properties of cowpea flour based recipes (akara) and enriched with sweet potato,” J. Nutr. Health Food Eng. Vol. 7, no. 4, pp. 325-330, 2017. DOI: 10.15406/jnhfe.2017.07.00243.
     Google Scholar
  32. E.S. Buckman, I. Oduro, W.A. Plahar and C. Tortoe, “Determination of the chemical and functional properties of yam bean (Pachyrhizus erosus (L.) Urban flour for food systems,” Food Sci. Nutr., vol. 6 no. 2, pp. 457 – 463, 2018.
     Google Scholar
  33. H. Kusumayanti, N.A. Handayani and H. Santosa, “Swelling power and water solubility of cassava and sweet potatoes flour,” International Conference on Tropical and Coastal Region Eco-Development 2014 (ICTCRED 2014), Procedia Environ. Sci., vol. 23, pp. 164 – 167, 2015.
     Google Scholar
  34. Y.A. Adebowale, I.A. Adeyemi and A.A. Oshodi, “Functional and physichochemical properties of flours of six mucuna species,” Afr. J. Biotechnol., vol. 4, no.12, pp.1461-1468, 2005.
     Google Scholar