##plugins.themes.bootstrap3.article.main##

In this study we evaluated the effect of temperature and time storage on the quality parameters of mono cultivar olive oil drupes. In particular, analyses of total free phenols, fatty acids, lipophilic and hydrophilic antioxidant capacity, sensory analysis, at different temperatures and different times of post harvest storage, were performed. All data obtained have been singularly processed by Functional Mathematical Index (FMI).

References

  1. Di Giovacchino L. Handbook of Olive Oil 2nd ed. Springer Science & Business Media New York USA 2013. pp. 57-96.
     Google Scholar
  2. Ryan D., Robards K. (1998) Phenolic compounds in olives. Analyst. 123:31R–44R.
     Google Scholar
  3. European Commission (2012) Olive oil farms report. Brussels, February. Unit L3 D.
     Google Scholar
  4. Coz A., Villegas M., Andres A., Viguri J., Mantzavinos D., Xekoukoulotakis N. Management scenarios for olive oil mill based on characterization and leaching test. J. of Chemical Technology and Biotechnology. Vol. 89, 1542-1547, 2011.
     Google Scholar
  5. Mota A.H., Silva C.O., Nicolai M., Baby A., Palma L., Rijo P., Ascensao L., Reis C.P., Design and evaluation of novel topical formulation with olive oil as natural functional active. Pharm Dev Technol. Vol 23, 8, pp. 794-805, 2018.
     Google Scholar
  6. Ghanbari, R., Anwar, F., Alkharfy, K. M., Gilani, A.-H., & Saari, N. Valuable Nutrients and Functional Bioactives in Different Parts of Olive (Olea europaea L.). A Review; International Journal of Molecular Sciences. Vol 13 (3), pp. 3291-3340, 2012.
     Google Scholar
  7. Marrugat J, Covas MI, Fitó M, Schröder H, Miró-Casas E, Gimeno E, López-Sabater MC, de la Torre R, Farré M; (2004) Effects of differing phenolic content in dietary olive oils on lipids and LDL oxidation a randomized controlled trial. SOLOS Investigators. Eur. J. Nutr. Vol. 43, 3, pp. 140-147, 2004.
     Google Scholar
  8. Hernáez Á, Remaley AT, Farràs M, Fernández-Castillejo S, Subirana I, Schröder H, Fernández-Mampel M, Muñoz-Aguayo D, Sampson M, Solà R, Farré M, de la Torre R, López-Sabater MC, Nyyssönen K, Zunft HJ, Covas MI, Fitó M. J., Olive Oil Polyphenols Decrease LDL Concentrations and LDL Atherogenicity. Men in a Randomized Controlled Trial. Aug. Vol 145(8), pp. 1692-1697, 2015.
     Google Scholar
  9. Lupinacci S., Toteda G., Vizza D., Perri A., Benincasa C, Mollica A., La Russa A., Gigliotti P., Leone F., Lofaro D., Bonoiglio M., Perri E., Bonofiglio R. Active compounds extracted from extra virgin olive oil counteract mesothelial-to-mesenchymal transition of peritoneal mesothelium cells exposed to conventional peritoneal dialysate: in vitro and in vivo evidences. J. Nephrol. Vol. 30 (6), pp. 1-10, 2016..
     Google Scholar
  10. Demosthenes B. Panagiotakos a, Christos Pitsavos b, Fotini Arvaniti c, Christodoulos Stefanadis, Adherence to the Mediterranean food pattern predicts the prevalence of hypertension, hypercholesterolemia, diabetes and obesity, among healthy adults; the accuracy of the MedDietScore. Preventive Medicine. Vol. 44, pp. 335–340, 2007.
     Google Scholar
  11. International Olive Oil Council Trade Standard Applying to olive oils and olive-pomace oils. COI/T.15/NC no. 3/Rev1, 5 December, 2003.
     Google Scholar
  12. Quaglia G., Paoletti F., Finotti E., Beye C. and Raffo A. Antioxidant role of minor compounds in vegetables with particular attention to oils. Recent Researchs Development in Nutrition Research. Vol. 2, pp. 91-112, 1998.
     Google Scholar
  13. Cappelli P. and Vannucchi V. Principi di Chimica degli Alimenti. ed. Zanichelli Bologna, Italy 2016 ch. 23, pp. 411-421.
     Google Scholar
  14. Schrfder H. Protective mechanisms of the Mediterranean diet in obesity and type 2 diabetes. Journal of Nutritional Biochemistry. Vol. 18, pp. 149–160, 2007.
     Google Scholar
  15. Moreno J. J. Effect of olive oil minor components on oxidative stress and arachidonic acid mobilization and metabolism by macrophages; RAW 264.7. Free Radical Biology & Medicine. Vol. 35, n. 9, pp. 1073–1081, 2003.
     Google Scholar
  16. Owen W.R., Mier W., Giacosa A., Hull W.E., Spiegelhalder B., Bartsch H. Phenolic compounds and squalene in olive oil: the concentration and antioxidant potential of total phenols, simple phenols, secorridoids, lignans and squalene. (2000); Food and Chemical Toxicology 38. 647-659.
     Google Scholar
  17. Huisman M.M.H., Schols H.A. and VoragenA.G.J. Changes in cell wall polysaccharides from ripening olive fruits. Carbohydrate Polymers. Vol. 31, pp. 123-133, 1996.
     Google Scholar
  18. Benincasa C., La Torre C., Plastina P., Fazio A., Perri E., Caroleo M.C., Gallelli L., Cannataro R. and Cione E. Hydroxytyrosyl Oleate: Improved Extraction Procedure from Olive Oil and By-Products, and In Vitro Antioxidant and Skin Regenerative Properties. Antioxidants. Vol. 8, pp. 233, 1-10 2019.
     Google Scholar
  19. Rotondi A., Bendini A, Cerretani L., Mari M., Lecker G., Toschi T. G. Effect of olive ripening degree on the oxidative stability and organoleptic properties of Cv Nostrana di Brisighella extra virgin olive oil. J. of Agricoltural and Food Chemistry. Vol. 52, pp. 3649-3654, 2004.
     Google Scholar
  20. Beltran G., Aguilera M. P., Del Rio C., Sanchez S., Martinez L. Influence of fruit ripening process on the natural antioxidant content of Hojiblanca virgin olive oils. Food Chemistry. Vol. 89, pp. 207–215, 2005.
     Google Scholar
  21. Gutierrez F., Jimenez B., Ruiz A., Albi M.A. Effect of olive ripeness on the oxidative stability of virgin olive oil extracted from the varieties picual and hojiblanca and on the different components involved. J. Agric. Food Chem. Vol.47, pp. 121-127, 1999.
     Google Scholar
  22. Finotti E., Paoletti F, Bertone A, Galassi P and Quaglia G. Antioxidant capacity determination of extra virgin olive oils unsaponifiable fraction by crocin bleaching inhibition method. Nahrung. Vol. 42, n. 5, pp. 324-325, 1998.
     Google Scholar
  23. Gharsallaoui M., Benincasa C., Ayadi M., Perri E., Khlif M., Gabsi S. Impact of Olives Storage and Irrigation with Treated Wastewater on the Oil Quality: Simulation of olive Mill Conditions. Int. J. of Sustainable Water and Environmental Systems. Vol. 5, pp. 51-57, 2013.
     Google Scholar
  24. Kiritsakis, Apostolos & Nanos, G & Polymenopulos, Z & Thomai, T & M. Sfakiotakis, E. Effect of fruit storage conditions on olive oil quality. Journal of the American Oil Chemists' Society. Vol. 75, pp. 721-724, 1998.
     Google Scholar
  25. Clodoveo M. L. Delcuratolo D., Gomes T., Colelli G. Effect of different temperature and storage atmospheres on Coratina olive oil quality. Food Chemistry. Vol. 102, pp. 571-576, 2007.
     Google Scholar
  26. Poiana M., Mincione A. Fatty acids evolution and composition of olive oils extracted from different olive cultivars grown in calabrian area. Grasas y Aceites. Vol.55, pp. 282-290, 2004.
     Google Scholar
  27. Muzzalupo I., Chiappetta A., Stabile G., Bucci C., Perri E. Intra-varietal difference of ’Carolea’ olive assessed by molecular markers. Acta Horticolturae. Vol. 918, pp. 771-776, 2011
     Google Scholar
  28. Piscopo A., De Bruno A., Zappia A, Ventre C., Poiana M. Data on some qualitative parameters of Carolea olive oils obtained in different areas of Calabria (Southern Italy). Data in Brief. Vol. 9, pp. 78-80, 2016.
     Google Scholar
  29. Piscopo A., De Bruno A., Zappia A, Ventre C., Poiana M. Characterization of monovarietal olive oils obtained from mills of Calabria region (Southern Italy). Food Chemistry. Vol. 213, pp. 313-318, 2016.
     Google Scholar
  30. Coseteng M.Y, C.Y Lee C.Y. Changes in apple polyphenolxidase and polyphenol concentration in relation to degree of browning. J. of Food Science. Vol 52, n. 4, pp. 985-986, 1987.
     Google Scholar
  31. Bors W., Michel C., Saran M.; Inhibition of bleaching of the carotenoid crocin, a rapid test for quantifying antioxidant activity. Biochimica et Biophysica. Acta. Vol. 796, pp. 312-319, 1984.
     Google Scholar
  32. Finotti E., Beye C., Nardo N., Quaglia G., Milin C., Giacometti J., Physico-chemical characteristics of olives and olive oil from two mono-cultivars during various ripening phases. Nahrung/Food. Vol 45, n. 5, pp. 350-352, 2001.
     Google Scholar
  33. Acquistucci R., Melini V., Carbonaro M, and Finotti E. Bioactive molecules and antioxidant activity in durum wheat grains and related millstream fractions International Journal of Food Sciences and Nutrition. Pp 1-9, 2013.
     Google Scholar
  34. Ordoudi S.A. and Tsimidou M.Z. (2006) Crocin Bleaching Assay (CBA) in Structure-Radical Scavenging Activity Studies of Selected Phenolic Compounds. J. Agriculture and. Food Chemistry. Vol. 54, pp. 9347-9356, 2006.
     Google Scholar
  35. Mingrone G., Greco A.V., Finotti E., Passi S.;Free fatty acids a stimulus for mucin hypersecretion in cholesterol gallstone biles. Biochimica et Biophysica Acta.Vol. 958, pp. 52-59, 1988.
     Google Scholar
  36. European Commission Regulation n. 2568/91 of 11 July 1991
     Google Scholar
  37. Finotti E, Bersani A.M., Bersani E. Total quality indexes for extra-virgin olive oil. J. of Food Quality. Vol.30, pp. 911-931, 2007.
     Google Scholar
  38. Finotti E., V., Bersani E., Vivanti V.,Friedman M. Application of a Functional Mathematical Index to the evaluation of the nutritional quality of potatoes. Food 3 (special issue 1), pp. 30-36, 2009.
     Google Scholar
  39. Finotti E., Bersani E. and M. Friedman. Application of a Functional Mathematical Index for Antibacterial and Anticarcinogenic Effects of Tea Catechins, J Agriculture and Food Chemistry. Vol. 59, pp. 864–869, 2011.
     Google Scholar
  40. Finotti, E. Bersani, V. Vivanti and M. Friedman Application of a functional mathematical quality index to asparagine, free sugar and phenolic acid content of 20 commercial potato varieties. Journal of Food Quality. Vol. 34, pp. 74-79, 2011.
     Google Scholar
  41. Finotti E., Bersani E., Del Prete E., Friedman M. A functional mathematical index for predicting effects of food processing on eight sweet potato (Ipomoea batatas) cultivars. J. of Food Composition and Analysis. Vol. 27, pp. 81-86, 2012.
     Google Scholar
  42. Finotti E., Bersani A., Bersani E. and Del Prete E. Functional Mathematical index (FMI): An index generator for “Taming” quality applied to food and processes. In Chloe M. Gagne and Daniel B. Jones Processed Foods Quality, Safety Characteristics and Health implications. New York, USA: Nova Publishers, 2013, ch 5, pp. 107-138.
     Google Scholar