Extraction and Use of Anthocyanins from Radish (Raphanus Sativus L Var Crimson Gigant) as a Natural Colorant in Yogurt
##plugins.themes.bootstrap3.article.main##
Radish (Raphanus sativus L. var Crimson Gigant) contains significant quantities of glycosylated anthocyanins, it can be used as natural food colorants due to their high stability. These pigments have therapeutic and pharmacological characteristics that are associated to antioxidant activity. Furthermore, the pigments of radish are important for nutritional and medicinal uses, for all the benefits that they provide to human health. The objective of this research was to extract anthocyanins from the shell of radish in pure form, evaluate its antioxidant activity in vitro and then use it as a food coloring in natural yogurt. For sample extraction, the radish shell was separated by finely cutting it from the body of the radish, it was macerated with an acidified solution of methanol-water and evaporated by 80%. The extract was absorbed with an ion exchange resin, subsequently the anthocyanins were released in an acidified solution, finally the extracts were purified by reverse phase column chromatography. 14 fractions were obtained and were monitored by thin layer chromatography, afterwards antioxidant activity was evaluated by methods such as DPPH, ABTS and TBARS. A stable cherry powder was obtained, which was used as a yogurt colorant and was very well accepted by the judges.
References
-
Wu X, Beecher GR, Holden JM, Haytowitz DB, Gebhardt SE, Prior RL. Concentrations of anthocyanins in common foods in the United States and estimation of normal consumption. J Agric Food Chem. 2006;54(11):4069–75. http://dx.doi.org/10.1021/jf060300l.
Google Scholar
1
-
Bendokas V, Stanys V, Mažeikienė I, Trumbeckaite S, Baniene R, Liobikas J. Anthocyanins: From the field to the antioxidants in the body. Antioxidants (Basel). 2020a;9(9):819. http://dx.doi.org/10.3390/antiox9090819.
Google Scholar
2
-
Bendokas V, Skemiene K, Trumbeckaite S, Stanys V, Passamonti S, Borutaite V, et al. Anthocyanins: From plant pigments to health benefits at mitochondrial level. Crit Rev Food Sci Nutr. 2020b;60(19):3352–65. http://dx.doi.org/10.1080/10408398.2019.1687421.
Google Scholar
3
-
Garzón, G. A. Anthocyanins as natural colorants and bioactive compounds: A review. Acta Biológica Colombiana, 2008;13(3), 27-36.
Google Scholar
4
-
Gomes LMM, Petito N, Costa VG, Falcão DQ, de Lima Araújo KG. Inclusion complexes of red bell pepper pigments with β-cyclodextrin: preparation, characterisation and application as natural colorant in yogurt. Food Chem. 2014;148:428–36. http://dx.doi.org/10.1016/j.foodchem.2012.09.065.
Google Scholar
5
-
Swer TL, Chauhan K, Mukhim C, Bashir K, Kumar A. Application of anthocyanins extracted from Sohiong (Prunus nepalensis L.) in food processing. Lebenson Wiss Technol. 2019;114(108360):108360. http://dx.doi.org/10.1016/j.lwt.2019.108360.
Google Scholar
6
-
Shanmugasundaram P, Bavenro, Rujaswini T. A review on food coloring agents-safe or unsafe? Res J Pharm Technol. 2019;12(5):2503. http://dx.doi.org/10.5958/0974-360x.2019.00421.9
Google Scholar
7
-
Villota García VP, Bonilla Lucero ML, Segura Mestanza JH, Coba Carrera RL, Brito Moina HL. Colorantes naturales para uso alimenticio. Ciencia Digital. 2019;3(2.4):88–98. http://dx.doi.org/10.33262/cienciadigital.v3i2.4.510.
Google Scholar
8
-
Garzón GA, Wrolstad RE. The stability of pelargonidin-based anthocyanins at varying water activity. Food Chem. 2001;75(2):185–96. http://dx.doi.org/10.1016/s0308-8146(01)00196-0.
Google Scholar
9
-
Brand-Williams W, Cuvelier ME, Berset C. Use of a free radical method to evaluate antioxidant activity. Lebenson Wiss Technol. 1995;28(1):25–30. http://dx.doi.org/10.1016/s0023-6438(95)80008-5.
Google Scholar
10
-
Kuskoski EM, Asuero AG, Troncoso AM, Mancini-Filho J, Fett R. Aplicación de diversos métodos químicos para determinar actividad antioxidante en pulpa de frutos. Food Sci Technol. 2005;25(4):726–32. http://dx.doi.org/10.1590/s0101-20612005000400016.
Google Scholar
11
-
Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951;193(1):265–75. http://dx.doi.org/10.1016/s0021-9258(19)52451-6.
Google Scholar
12
-
Kibanova D, Nieto-Camacho A, Cervini-Silva J. Lipid peroxidation induced by expandable clay minerals. Environ Sci Technol. 2009;43(19):7550–5. http://dx.doi.org/10.1021/es9007917.
Google Scholar
13
-
Marangoni Júnior L, De Bastiani G, Vieira RP, Anjos CAR. Thermal degradation kinetics of total anthocyanins in açaí pulp and transient processing simulations. SN Appl Sci. 2020;2(4). http://dx.doi.org/10.1007/s42452-020-2340-0.
Google Scholar
14
-
Castañeda-Ovando A, Pacheco-Hernández M de L, Páez-Hernández ME, Rodríguez JA, Galán-Vidal CA. Chemical studies of anthocyanins: A review. Food Chem. 2009;113(4):859–71. http://dx.doi.org/10.1016/j.foodchem.2008.09.001.
Google Scholar
15
-
Cooper-Driver GA. Contributions of Jeffrey Harborne and co-workers to the study of anthocyanins. Phytochemistry. 2001;56(3):229–36. http://dx.doi.org/10.1016/s0031-9422(00)00455-6.
Google Scholar
16
-
Ahmadiani N, Robbins RJ, Collins TM, Giusti MM. Anthocyanins contents, profiles, and color characteristics of red cabbage extracts from different cultivars and maturity stages. J Agric Food Chem. 2014;62(30):7524–31. http://dx.doi.org/10.1021/jf501991q.
Google Scholar
17
-
Zhang Y, Chen G, Dong T, Pan Y, Zhao Z, Tian S, et al. Anthocyanin accumulation and transcriptional regulation of anthocyanin biosynthesis in purple bok choy (Brassica rapa var. chinensis). J Agric Food Chem. 2014;62(51):12366–76. http://dx.doi.org/10.1021/jf503453e.
Google Scholar
18
-
Pan Y, Xu Y-Y, Zhu X-W, Liu Z, Gong Y-Q, Xu L, et al. Molecular characterization and expression profiles of myrosinase gene (RsMyr2) in radish (Raphanus sativus L.). J Integr Agric. 2014;13(9):1877–88. Available from: http://dx.doi.org/10.1016/s2095-3119(13)60644-9.
Google Scholar
19
-
Silva AF da, Lopes M de O, Cerdeira CD, Ribeiro IS, Rosa IA, Chavasco JK, et al. Study and evaluation of antimicrobial activity and antioxidant capacity of dry extract and fractions of leaves of Raphanus sativus var. oleiferus Metzg. Biosci J. 2020;36(2). http://dx.doi.org/10.14393/bj-v36n2a2020-41848.
Google Scholar
20
-
Kapusta-Duch J, Kopeć A, Piatkowska E, Borczak B, Leszczyńska T. The beneficial effects of Brassica vegetables on human health. Rocz Panstw Zakl Hig. 2012;63(4):389–95.PMID: 23631258.
Google Scholar
21
-
Ramos-Escudero, F., Muñoz, A. M., Alvarado-Ortiz Ureta, C., & Yáñez, J. A. Antocianinas, polifenoles, actividad antioxidante de sachapapa morada (Dioscorea trífida L.) y evaluación de lipoperoxidación en suero humano. Revista de la Sociedad Química del Perú, 2010;76(1), 61-72. http://www.scielo.org.pe/scielo.php?script=sci_arttext&pid=S1810634X2010000100007&lng=es&nrm=iso.
Google Scholar
22
-
Giusti MM, Rodríguez-Saona LE, Baggett JR, Reed GL, Durst RW, Wrolstad RE. Anthocyanin pigment composition of red radish cultivars as potential food colorants. J Food Sci. 2008;63(2):219–24. http://dx.doi.org/10.1111/j.1365-2621.1998.tb15713.x.
Google Scholar
23
-
Ikeda T, Yamazaki K, Kumakura H, Hamamoto H. Effect of high temperature on fruit quality of pot-grown strawberry plants. Acta Hortic. 2009;(842):679–82. http://dx.doi.org/10.17660/actahortic.2009.842.146.
Google Scholar
24
-
Jiménez N, Bohuon P, Lima J, Dornier M, Vaillant F, Pérez AM. Kinetics of anthocyanin degradation and browning in reconstituted blackberry juice treated at high temperatures (100-180 degrees C). J Agric Food Chem. 2010;58(4):2314–22. http://dx.doi.org/10.1021/jf902381e.
Google Scholar
25
-
Jing P, Zhao S-J, Ruan S-Y, Xie Z-H, Dong Y, (Lucy) Yu L. Anthocyanin and glucosinolate occurrences in the roots of Chinese red radish (Raphanus sativus L.), and their stability to heat and pH. Food Chem. 2012;133(4):1569–76. http://dx.doi.org/10.1016/j.foodchem.2012.02.051.
Google Scholar
26
-
Fan G, Han Y, Gu Z, Gu F. Composition and colour stability of anthocyanins extracted from fermented purple sweet potato culture. Lebenson Wiss Technol. 2008;41(8):1412–6. http://dx.doi.org/10.1016/j.lwt.2007.09.003.
Google Scholar
27
-
Hurtado NH, Pérez M. Identificación, Estabilidad y Actividad Antioxidante de las Antocianinas Aisladas de la Cáscara del Fruto de Capulí (Prunus serótina spp capuli (Cav) Mc. Vaug Cav). CIT Inform Tecnol. 2014;25(4):131–40. http://dx.doi.org/10.4067/s0718-07642014000400015.
Google Scholar
28
-
Cavalcanti RN, Santos DT, Meireles MAA. Non-thermal stabilization mechanisms of anthocyanins in model and food systems—An overview. Food Res Int. 2011;44(2):499–509. http://dx.doi.org/10.1016/j.foodres.2010.12.007.
Google Scholar
29