Evaluation of Different Industrial End Uses of Improved Cassava Varieties Grown in South-Eastern Africa

##plugins.themes.bootstrap3.article.main##

  •   Gilbert O. Sampson

  •   Emmanuel O. Afoakwa

  •   Leon Brimer

  •   Drinah Nyirenda

  •   Cornelius Nkonkola Mwansa

  •   Linley Chiwona-Karltun

Abstract

This work characterized two local and seven improved Cassava Mosaic Disease [CMD]-tolerant cassava varieties for their biochemical composition and viscoelastic (pasting) properties. The biochemical composition and starch pasting properties were evaluated respectively using standard analytical methods and Brabender Viscoamylograph. Cluster dendogram and principal component analyses compared similarities in the nine cassava varieties, thus predicting their varied food and industrial end uses. The different cassava varieties had starch, total sugars and reducing sugars content ranging from 53-69%, 6.5-9.2% and 0.9-2.5%, respectively. The starch content of the cassava varieties on dry weight basis (DW) varied from 54.0% to 69.0% with Nalumino having the lowest and Mweru having the highest respectively. Tanganyika, Mweulu, and Banguerlu also recorded relatively higher starch content of 62.7%, 63.6% and 63.6% respectively. Mweru, Tangayoka, Mweulu, and Bangweulu had fairly high starch content (>60%) and thus could be used for many commercial products such as starches, alcohols and glucose. The viscoelastic properties of the different varieties had pasting temperature (63.5–67.6oC), peak viscosity (402–595 BU), viscosity at 95oC (394–592 BU), viscosity at 50oC (126–254), breakdown viscosity (236–352 BU) and setback (-100–4 BU). Tanganyika recorded the highest pasting temperature (67.6oC), peak viscosity (595 BU), viscosity at 95oC (592 BU) and viscosity at 95oC-hold (317 BU). Bangweulu, Mweulu, Mweru, Manyokola, Nalumino, Kampolombo and Chila A were clustered differently from Chila B and Tanganyika on the basis of their biochemical qualities and pasting properties. These characterizations showed that Tanganyika would be suitable for products requiring high elasticity and gel strength, easier to cook and also more stable during cooking/preparation such as fufu (pounded cassava) and banku or Nshima. Chila A would also be suitable for use as fillers and binders in the baking, confectionery industries as substitutes of wheat flour. The low viscosities of Chila B make it suitable for household food uses such as snacks where the roots are boiled, roasted or toasted and consumed.


Keywords: Cassava, processing, pasting characteristic, starch quality, variety

References

Szyniszewska, A. M. Cassava Map, a fine-resolution disaggregation of cassava production and harvested area in Africa in 2014. Scientific Data, 2020, 7: 159.

Aryee, F. N. A., Oduro, I., Ellis, W. O., Afuakwa, J. J. The physicochemical properties of flour samples from the roots of 31 varieties of cassava. Food Contr. 2006, 17, 916–922.

Chiwona-Karltun, L., T. Tylleskar, J. Mkumbira, M. Gebre-Medhin, H. Rosling. Low dietary cyanogen exposure from frequent consumption of potentially toxic cassava in Malawi. Int. J. Food Sci. Nutr. 2000, 51, 33-43.

Kolawole, P.O., Agbetoye, L. Ogunlowo, S.A. Sustaining world food security with improved cassava processing technology: the Nigerian experience. Sustainability, 2010, 2, 3681-3694.

El-Sharkawy, M. A. Cassava biology and physiology. Plant Mol. Biol. 2003, 53, 621–641.

Baguma, Y., Sun, C., Borén, M., Olsson, H., Rosenquist, S., Mutisya, J., et al. Sugar-mediated semidian oscillation of gene expression in the cassava storage root regulates starch synthesis. Plant Signal Behav. 2008, 3, 1–7.

Otekunrin, O.A. Sawicka, B. Cassava, A 21st Century Staple Crop: How can Nigeria Harness its Enormous Trade Potentials?. Acta Scientific Agriculture, 2019, 3: 194-202.

Chiwona-Karltun, L., J. Mkumbira, J. Saka, M. Bovin, N. Mahungu, R. Rosling. The importance of being bitter - a qualitative study on cassava cultivar preference in Malawi. Ecol. Food Nutr. 1998, 37: 219-245.

Maziya-Dixon, B., Adebowale, A. A., Onabanjo, O. O., Dixon, A. G. O. Effect of variety and drying methods on physico-chemical properties of high quality cassava flour from yellow cassava roots. African Crop Science Conference Proceedings, 2005, 7, 635-641.

Maziya-Dixon, B., Dixon, A. G. O., Adebowale, A. A. Targeting different end uses of cassava: Genotypic variations for cyanogenic potentials and pasting properties. Int. J. Food Sci. Techn. 2007, 42, 969-976.

Montagnac, J. A., Davis, C. R., Tanumihardjo, S. A. Nutritional value of cassava for use as a staple food and recent advances for improvement. Compre. Rev. Food Sci. Food Safety, 2009, 8, 181-188.

Alene, A., Khatazu. Economic impacts of cassava research and extension in Malawi and Zambia. J. Develop. Agric. Econ. 2013, 5, 457-469.

Bayitse, R., Tornyie, F. & Bjerre, A-B. Cassava cultivation, processing and potential uses in ghana. In: Handbook on Cassava.Clarissa Klein (Ed). Nova Science Publishers Inc., 2017, USA.

Haggblade, S., Djurfeldt, A. A., Nyirenda, D. B., Lodin, J. B., Brimer, L., Chiona, M. M. et al. Cassava commercialisation in Southeastern Africa. J. Agribusiness Develop. Emer. Econ. 2012, 2, 4-40.

Eleazu, C., K. Eleazu. Determination of the proximate composition, total carotenoid, reducing sugars and residual cyanide levels of flours of six new yellow and white cassava (Manihot esculenta Crantz) varieties. Amer. J. Food Tech. 2012, 7: 642-649.

Gil, J. L., Buitrago, A. J. A. La yuca en la alimentacion animal. In: Ospina B, Ceballos H. (Eds.). La yuca en el tercer milenio: sistemas modernos de produccion, procesamiento, utilizacion y comercializacion. Cali, Colombia: Centro Internacional de Agricultura Tropical, 2002, 527–569. Retrieved from: http://www.clayuca.org/PDF/libro_yuca/capitulo28. pdf. Accessed on May 24, 2010.

Tewe, O. O., Lutaladio, N. Cassava for livestock feed in sub-Saharan Africa. Rome, Italy: FAO. 2004.

Rawel, H. M., Kroll, J. Die Bedeutung von Cassava ( Manihot esculenta, Crantz) als Hauptnahrungsmittel in tropischen Landern. Deutsche Lebensmittel-Rundschau, 2003, 99, 102–110.

Chandrasekara A. and Kumar, T.J. Roots and Tuber Crops as Functional Foods: A Review on Phytochemical Constituents and Their Potential Health Benefits. International Journal of Food Science. 2016.

Afoakwa, E. O., Sefa-Dedeh, S. Viscoelastic properties and changes in pasting characteristics of trifoliate yam (Dioscorea dumetorum) starch after harvest. Food Chem. 2002, 77, 203-208.

Afoakwa, E. O., Adjonu, R., Asomaning, J. Viscoelastic properties and pasting characteristics of fermented maize: influence of the addition of malted cereals. Int. J. Food Sci. Techn. 2010, 45, 380–386.

Iwe, M. O., Wolters, T., Gort, G., Stolp, W., Van Zuilichem, D. J. Behaviour of gelatinization and viscosity in soy-sweet potato mixtures by single-screw extrusion: A response surface analysis. J. Food Eng. 1999, 38, 369–379.

Awoyale, W., Adebayo B. Abass, A.B., Ndavi, M. Maziya-Dixon, B. and Sulyok, M. Assessment of the potential industrial applications of commercial dried cassava products in Nigeria. Food Measure. 2017, 11, 598–609.

Afoakwa, E. O., Budu, A. S., Asiedu, C., Chiwona-Karltun, L., Nyirenda, D. B. Viscoelastic properties and physico-functional characterization of six high yielding cassava mosaic disease-resistant cassava (Manihot esculenta Crantz) genotypes. J. Nutr. Food Sci. 2012, 2, 129-137.

Defloor, I., Leijskens, R., Bokanga, M., Delcour, J. A. Impact of genotype and crop age on the bread making and physico-chemical properties of flour produced from cassava (Manihot esculenta Crantz) planted in the dry season. J. Sci. Food Agric. 1994, 66, 193-202.

Adeyemi, I. A., Omolayo, O. Utilization of cocoyam flour and starch for biscuit and cake making. Nigerian J. Sci. 1984, 18, 34-37.

Kim, Y. S., Wiesenborn, D. P., Orr, P. H., Grant, L. A. Screening potato starch for novel properties using differential scanning calorimetry. J. Food Sci. 1995, 60, 1060–1065.

Nanda, S. K., Sajeev, M. S., Sheriff, J. T., Hermasankari, P. Starch extraction machinery for tuber crops. Central Tuber Crops Research Institute (Indian Council of Agricultural Research) Sreekariyam, Thiruvananthapuram, Kerala, India. Technical Bull. 2005, 40, 67-78

Pearson, D. The Chemical Analysis of Foods. Sixth edition. J. & A Churchill, London, 1970.

Champagne, E. T., Bett, K. L., Vinyard, B. T., McClung, A. M., Barton, F. E., et al. Correlation between cooked rice texture and rapid visco analyzer measurements. Cereal Chem. 1999, 76, 764–771.

Padonou, W., Mestres, C. Nago, M. C. The quality of boiled cassava roots: instrumental characterization and relationship with physicochemical properties and sensorial properties. Food Chem. 2005, 89, 261–270.

Mégnanou, R. M., Kouassi, S. K., Akpa, E. E., Djedji, C., Bony, N., et al. Physicochemical and biochemical characteristics of improved cassava varieties in Cote d’Ivoire. J. Animal and Plant Sci. 2009, 5, 507-514.

Afoakwa, E. O., Kongor, E. J., Annor, G. A., & Adjonu, R. Acidification and starch behaviour during co-fermentation of cassava (Manihot esculenta Crantz) and soybean (Glycine max Merr) into gari, an African fermented food. Int. J. Food Sci. Nutr. 2010, 61, 449-462.

Rasper, V. Theoretical aspests of amylographology. In: The amylograph handbook. Shuey, W. C., Tipples, E. E. (Eds.). America Association of Cereal Chemists, 1980, St Paul, MN, USA

Colonna, P., Leloup, V., Buleon, A. Limiting factors of starch hydrolysis. European Journal of Clinical Nutrition, 1992, 46, 517– 532.

Emiola, L., Delarosa, L. C. Physicochemical characteristics of yam starches. J. Food Biochem. 1981, 5, 115-130.

Numfor, F. A., Walter, W. M., Schwartz, S. J. Effect of emulsifiers on the physical properties of native and fermented cassava starches. J. Agric. Food Chem. 1996, 44, 2595–2599.

Ikegwu, O. J., Nwobasi, V. N., Odoh, M. O., Oledinma, N. U. Evaluation of the pasting and some functional properties of starch isolated from some improved cassava varieties in Nigeria African. J. Biotechn. 2009, 8, 2310-2315.

Sanni, L. O., Kosoko, S. B., Adebowale, A. A., Adeoye, R. J. The Influence of palm oil and chemical modification on the pasting and sensory properties of fufu flour. Int. J. Food Prop. 2004, 7, 229–237.

Sanni, L. O., Ikuomola, D. P., Sanni, S. A. Effect of length of fermentation and varieties on the qualities of sweet potato gari. Proceedings of 8th triennial Symposium of the International Society for Tropical Root Crops. Africa Branch (ISTRC-AB), Ed. M.O. Akoroda, IITA, Ibadan, Nigeria, 12–16 November 2001, 208-211.

Oguntunde, A. O. Starch modification for food application: review. Nigerian Food J. 1987, 5, 102-107.

Osungbaro, T. O. Effect of differences in varieties and dry milling of maize on the textural characteristics of Ogi (fermented maize porridge) and Agidi (fermented maize meal). J. Sci. Food Agric. 1990, 52, 1-12.

Rosenthal, F. R. T., Nakamura, T., Espindola, A. M. C., Jochimek, M. R. Structure of starch granules. Starke, 1974, 26, 50-55.

Adeyemi, I. A., Idowu, M. A. The evaluation of pregelatinised maize flour in the development of Massai, a baked product. Nigerian Food J. 1990, 8, 63-73.

Oduro, I., Ellis, W. O., Dziedzoave, N. T., Nimakoyeboah, K. Quality of gari from selected processing zones in Ghana. Food Contr. 2000, 11, 297-303.

##plugins.themes.bootstrap3.article.details##

How to Cite
Sampson, G. O., Afoakwa, E. O., Brimer, L., Nyirenda, D., Mwansa, C. N., & Chiwona-Karltun, L. (2022). Evaluation of Different Industrial End Uses of Improved Cassava Varieties Grown in South-Eastern Africa. European Journal of Agriculture and Food Sciences, 4(1), 20–26. https://doi.org/10.24018/ejfood.2022.4.1.419