Predicting Seasonal Rainfall Patterns and Trends in Juba County, South Sudan Using Artificial Neural Networks


  •   David Lomeling


A simple Feed Forward Neural Network (FFNN) model with a learning back-propagation algorithm was applied to forecast rainfall data from 1997-2016 of Juba County, South Sudan. Annual rainfall data were aggregated into three seasons MAMJ, JAS and OND and later trained for best predictions for the period 2017-2034 using the Alyuda Forecaster XL software. Best training was attained once the minimum error or cost function of the weight  was attained during gradient descent and expressed as Mean Square Error (MSE) and AE of the input variable.  The results showed that for MAMJ and JAS months, the number good forecasts were over 97% whereas this was between 60-80% for OND months. The Seasonal Kendal (SK) test on future rainfall forecasts as well as the Theil-Sen slope showed a declining monotonic trend in the mean amounts in all three seasons with MAMJ, JAS at OND at 100, 150 and 80 mm respectively towards the end of 2034.  Declining onset of MAMJ rains is expected to significantly affect the timing for land preparation and crop planting. The forecast accuracy of the FFNN can be used as a vital tool for decision makers in projecting future rainfall events.

Keywords: Feed Forward Neural Network, Land Preparation, Monotonic Trend, Rainfall Prediction.


D. Lomeling, A. L. Modi, S. K. Moti, M. C. Kenyi, G. M. Silvestro, J. L. L. Yieb. Comparing the Macro-aggregate Stability of Two Tropical Soils: Clay Soil (Eutric vertisol) and Sandy Loam Soil (Eutric leptosol). International Journal of Agriculture and Forestry vol. 6 no. 4:142-151. 2016.

B. Li, L. Wang, K. F. Kaseke, L. Li, M. K. Seely. The Impact of Rainfall on Soil Moisture Dynamics in a Foggy Desert.

PLOS ONE, vol. 11 no. 10 e0164982.

doi: 10.1371/journal.pone.0164982. 2016.

M. Burke, A. de Janvry, J. Quintero-. Providing index-based

Agricultural insurance to smallholders: Recent progress and

future promise. 2015. Available at: 1292528456380/7626791-1303141641402/7878676-1306270833789/Parallel-Session-5-Alain_de_Janvry.pdf. Accessed 18 Nov 2015.

B. Narasimhan and R. Srinivasan. Development and evaluation of soil moisture deficit index (SMDI) and evapotranspiration deficit index (ETDI) for agricultural drought monitoring. Agric. For. Meteorol., vol. 133: 69–88. 2005.

E. Dutra, P. Viterbo, P. M. A. Miranda. Era-40 reanalysis hydrological applications in the characterization of regional drought. Geophys. Res. Lett. 35, L19402. 2008.

E. Njoku, T. Jackson, V. Lakshmi, T. Chan, S. Nghiem. Soil

moisture retrieval from AMSR-E, IEEE Geosc. Remote Sens. Let., vol. 41 no. 2: 215–229. doi:10.1109/TGRS.2002.808243. 2003.

M. Owe, R. de Jeu, T. Holmes. Multi-sensor historical climatology of satellite-derived global land surface moisture, J. Geophys. Res., vol. 113, F01002. doi:10.1029/2007JF000769.2008.

P. Singh. Indian summer monsoon rainfall (ISMR) forecasting

using time series data: A fuzzy-entropy-neuro based expert system. Geoscience Frontiers, vol. 9: 1243-1257. 2018.

H. Hartmann, J. A. Snow, B. Su. Seasonal predictions of precipitation in the Aksu-Tarim River basin for improved water

resources management. Glob. Planet. Chang., vol. 147: 86–96. 2016.

S. R. P. Devi, C. Arulmozhiyarman, C. Venktash, A. Pramay.A.

Performance comparison of artificial neural network models for daily

rainfall prediction. International Journal of Automation and

Computing, vol. 13 no. 5: 417-427. 2016.

N. Q. Hung, M. S. Babel, S. Weesakul, N. K. Tripathi. An artificial

neural network model for rainfall forecasting in Bangkok, Thailand,

Hydrol. Earth Syst. Sci., vol. 13: 1413– 1425. 2009.

B. Warsito, R. Gernowo, A. Sugiharto. Rainfall prediction by using

wavelet general regression neural network. Int. J. Appl. Math. Stat.,

vol. 54 no. 3: 32–41. 2016.

M. Haviluddin, S. Hardwinarto, M. A. Sumaryono. 2015. Rainfall

Monthly Prediction Based on Artificial Neural Network: A Case

Study in Tenggarong Station, East Kalimantan –Indonesia. Procedia

Computer Science, vol. 59: 142 – 151. 2015.

J. Abbot, J and J. Marohasy. Skilful rainfall forecasts from artificial

neural networks with long duration series and single month

optimization. Atmospheric Research, vol. 197: 289-299. 2017b.

M. H. Elsanabary and T. Y. Gan. Wavelet analysis of seasonal

rainfall variability of the Upper Blue Nile Basin, its teleconnection to

global sea surface temperature, and its forecasting by an artificial

neural network. Mon. Weather Rev., vol.142 no. 5: 1771–1791.

K. Benmahdjoub, Z. Amour, M. Boulifa. Forecasting of rainfall using

time delay neural network in Tizi-Ouzou (Algeria). Terragreen 13

International Conference 2013- Advancements in Renewable Energy

and Clean Environment. Energy Procedia, vol. 36: 1138–1146.

H. S. Badr, B. F. Zaitchik, S. D. Guikema. Application of

statistical models to the prediction of seasonal rainfall anomalies over the Sahel. J. Appl. Meteorol. Climatol., vol. 3: 614–636. 2014.

M. Zeynoddin, H. Bonakdari, A. Azari, I. Ebtehaj, B. Gharabaghi,

H. R. Madavar. Novel hybrid linear stochastic with non-Linear extreme machine learning method. J Environ. Manage. vol. 15 no.

: 190-206. doi: 10.1016/j.jenvman.2018.05.072. 2018.

J. L. Ng, S. A. Aziz, H. F. Huang, Y. Wayayok, M. K. Rowshon.

Stochastic modelling of seasonal and yearly rainfalls with low-

frequency variability. Stoch. Environ. Res. Risk A. vol, 31: 2215– 1373-9. 2017.

Z. M. Yaseen, M I. Ghareb, I. Ebtehaj, J. Bonakdari, R. Siddique,

S. Heddam, A. A. Yusif, R. Deo. Rainfall pattern forecasting using

novel hybrid intelligent model based ANFIS-FFA. Water Resour.

Manag., vol. 32 no. 1: 105-122. 2018.

O. I. Osarumwense. Applicability of box Jenkins SARIMA model in

rainfall forecasting: a case study of Port-Harcourt South Nigeria.

Can. J. Comput. Math. Nat. Sci. Eng. Med., vol. 4: 1–4. 2013.

D. Lomeling, S. W. Kenyi. Forecasting solid waste generation in Juba

Town, South Sudan using Artificial Neural Networks (ANNs) and

Autoregressive Moving Averages (ARMA). Journal of Environment

and Waste Management, vol. 4 no. 2: 211-223. 2017.

H, Moeeni, B. Hossein, I. Ebtehaj. Integrated SARIMA with

Neuro-Fuzzy Systems and Neural Networks for Monthly

Inflow Prediction. Water Resources Manage., vol. 37 no. 1: 1- 17.

doi 10.1007/s11269-017-1632-7. 2017.

M. A. Khamis and K. A. Fattah. Estimating oil–gas ratio

for volatile oil and gas condensate reservoirs: artificial neural

network, support vector machines and functional network approach.

Journal of Petroleum Exploration and Production Technology, vol. 9:

-582. 2018.

P. Mirzaie and S. Salavati. The Application of Artificial Neural

Networks for the Prediction of Oil Production Flow Rate, Energy

Sources, Part A: Recovery, Utilization, and Environmental Effects,

vol. 34 no. 19: 1834-1843. doi:10.1080/15567036.2010.492386.2012.

R. H. Abiyev and M. K. S. Ma’aitah MKS. Deep Convolutional

Neural Networks for Chest Diseases Detection. Journal of

Healthcare Engineering. Article ID 4168538, 11 pages. 2018.

S. P. Mohanty, D. Hughes, M. Salathé. Using Deep Learning

for Image-Based Plant Disease Detection. Front. Plant Sci.,

vol. 7 Article ID 1419, 10 pages. doi: 10.3389/fpls.2016.01419. 2016.

L. Liu, M. Ji, M. Buchroithner. Transfer Learning for Soil

Spectroscopy Based on Convolutional Neural Networks and Its

Application in Soil Clay Content Mapping Using Hyperspectral

Imagery. Sensors 18: 3169, 18 pages. doi:10.3390/s18093169. 2018.

T. Shaikhina and N. A. Khovanova. 2017. Handling limited datasets

with neural networks in medical applications: A small data approach.

Artificial Intelligence in Medicine, vol. 75: 51-63. 2016.

M. Hayes, M. Svoboda, N. Wall, M. Widhalm. The Lincoln

Declaration on Drought Indices: Universal Meteorological

Drought Index Recommended. Bull. Amer. Meteor. Soc. vol. 92:

–488. doi: 2011.

T. B. McKee, N. J. Doesken, J. Kleist J. The Relationship of

Drought Frequency and Duration to Time Scales. Eighth

Conference on Applied Climatology, 17-22 January 1993,

Anaheim, California.

R. M. Hirsch, J. R. Slack, R. A. Smith. Techniques of Trend

Analysis for Monthly Water Quality Data. Water Resources

Research, vol. 18 no. 1: 107-121. 1982.

D. R. Helsel and R. M. Hirsch RM. Statistical Methods in Water

Resources Elsevier, NY. 1995.

T. Salmi, A. Maatta, P. Anttila, T. Ruoho-Airola, T. Amnell.

Detecting Trends of Annual Values of Atmospheric

Pollutants by the Mann-Kendall Test and Sen’s Slope

Estimates—The Excel Template Application MAKESENS;

Finnish Meteorological Institute: Helsinki, Finland. 2002.

N. H. Christiansen, N. H. Voie, P. E. T. Winther, O. J. Høgsberg.

Comparison of Neural Network Error Measures for

Simulation of Slender Marine Structures. Journal of Applied

Mathematics vol. 2014, Article ID 759834, 11 pages. 2014.

T. Nakama. Comparisons of Single- and Multiple-Hidden-

Layer Neural Networks. In: Liu D, Zhang H, Polycarpou

M, Alippi C, He H. (eds) Advances in Neural Networks –

ISNN 2011. ISNN 2011. Lecture Notes in Computer

Science, vol 6675. Springer, Berlin, Heidelberg.

E. D. Sonntag. Feedback stabilization using two-hidden-

layer nets. IEEE Transactions on Neural Networks, vol.3:

–990. 1992.

F. Lolli, R. Gamberini, A. Regattieri, E. Balugani, T. Gatos,

S. Gucc. Single-hidden layer neural networksfor forecasting

intermittent demands. International Journal of Production

Economics, vol. 183 no. A: 116-128. 2016. 2016.

O. Mahmoud, O. Anwar, F. E. S. M. Jimoh, Learning Algorithm

Effect on Multilayer Feed Forward Artificial Neural Network

Performance in Image Coding. Journal of Engineering Science and

Technology, vol. 2 no. 2: 188–199. 2007.


How to Cite
Lomeling, D. (2020). Predicting Seasonal Rainfall Patterns and Trends in Juba County, South Sudan Using Artificial Neural Networks. European Journal of Agriculture and Food Sciences, 2(2).