Assessment of Genotype × Environment Interaction of Safflower (Carthamus tinctorius L.) Genotypes by Parametric and Non-Parametric Methods

##plugins.themes.bootstrap3.article.main##

  •   İlhan Subaşı

  •   Dilek Başalma

Abstract


Genotype-environment interaction is a significant factor for finding and selecting stable and productive varieties in safflower breeding programs. This study was conducted at three locations over two years (2016-2017) to determine the extent of genotype by environment (GE) interaction in seed and oil yield. 20 safflower lines and cultivars were evaluated in terms of stability in 3 environments. Considering the stability and performance, the most suitable genotypes were determined as Remzibey-05 and Genotype-125 in seed yield, Genotype-8 and Genotype-155 in oil yield.




In terms of stability and performances of genotypes, the environment of Ikizce 2017 (E4) was prominent. Correlation analysis among parametric and nonparametric features was given only for seed yield. The following stability parameters were calculated: the coefficient of variation (CV), regression constant (ai), regression coefficient (bi), mean deviation squares from regression (S2di), coefficient of determination (Ri2), stability variance (σi2), ecovalance value (Wi), stability index (Pi) and as nonparametric stability measures Si(1) and Si(2) values. This analysis indicated that seed yield was significantly positively correlated only with Pi (P<0.01). CV showed a positively significant correlation with ai. S2di and ri2 had a positive association with Ri2, σi2, Wi, Pi, Si(1), Si(2), and between each other.


Keywords: Safflower, Carthamus tinctorius L., genotyp x environment interaction, stability

References

M. J. Mahasi, R. S. Pathak, F. N. Wachira, T. C. Riungu, M. G. Kinyua, and J. K. Waweru, “Genotype by environment (GxE) interaction and stability in safflower (Carthamus tinctorious L.),” Asian J. Plant Sci., vol. 5, no. 6, pp. 1017–1021, 2006, doi: 10.3923/ajps.2006.1017.1021.

A. Ashri and P. F. Knowles, “ Cytogenetics of Safflower (Carthamus L.) Species and Their Hybrids 1 ,” Agron. J., vol. 52, no. 1, pp. 11–17, 1960, doi: 10.2134/agronj1960.00021962005200010004x.

P. F. Knowles, “Centers of plant diversity and conservation of crop germ plasm: Safflower,” Econ. Bot., vol. 23, no. 4, pp. 324–329, 1969, doi: 10.1007/BF02860678.

Y. Arslan and B. Tarikahya Hacioğlu, “Seed fatty acid compositions and chemotaxonomy of wild safflower (Carthamus L., asteraceae) species in Turkey,” Turkish J. Agric. For., vol. 42, no. 1, pp. 45–54, 2018, doi: 10.3906/tar-1708-68.

J. R. Smith, Safflower, Champaign,. AOCS Press, 1996.

H. Dajue, L.; Mündel, Safflower, Carthamus tinctorius L. (Vol. 7) 1996. Bioversity International.

V. L. Bradley, R. L. Guenthner, R. C. Johnson, and R. M. Hannan, “Evaluation of Safflower Germplasm for Ornamental Use,” no. Table 1, pp. 433–435, 1999.

M. M. Karimkhani, R. Shaddel, M. H. H. Khodaparast, M. Vazirian, and S. Piri-Gheshlaghi, “Antioxidant and antibacterial activity of safflower (Carthamus tinctorius L.) extract from four different cultivars,” Qual. Assur. Saf. Crop. Foods, vol. 8, no. 4, pp. 565–574, 2016, doi: 10.3920/QAS2015.0676.

H. C. Becker and J. Leon, “Stability analysis in plant breeding,” Plant Breed., vol. 101, pp. 1–23, 1988, doi: 10.1111/j.1439-0523.1988.tb00261.x.

C. S. Lin, M. R. Binns, and L. P. Lefkovitch, “Stability Analysis: Where Do We Stand?,” Crop Sci., 1986, doi: 10.2135/cropsci1986.0011183X002600050012x.

H. C. Becker, “Correlations among some statistical measures of phenotypic stability,” Euphytica, 1981, doi: 10.1007/BF00038812.

Y. Arslan, “Farklı azot ve fosfor seviyelerinin kuru şartlarda yetiştirilen aspir (Carthamus tinctorius L.) bitkisinin verim ve verim özellikleri üzerine etkisi / Effect of different levels of nitrogen and phosphorus on the yield and yield component of safflower", Ankara Ün. Fen Bilimleri Enstitüsü, 2014.

M. Bertrand and L. Brühl, “Comparison of Different Methods for the Determination of the Oil Content in Oilseeds,” J. Am. Oil Chem. Soc., vol. 78, no. 1, pp. 95–102, 2001, doi: https://doi.org/10.1007/s11746-001-0226-y.

J. Mossé, “Nitrogen to Protein Conversion Factor for Ten Cereals and Six Legumes or Oilseeds. A Reappraisal of Its Definition and Determination. Variation According to Species and to Seed Protein Content,” J. Agric. Food Chem., 1990, doi: 10.1021/jf00091a004.

Asia Nosheen, Asghari Bano, “Effect of plant growth promoting rhizobacteria on root morphology of Safflower (Carthamus tinctorius L.),” African J. Biotechnol., vol. 10, no. 59, pp. 12639–12649, 2012, doi: 10.5897/ajb11.1647.

Y. Kaya, M. Akçura, and S. Taner, “GGE-Biplot analysis of multi-environment yield trials in bread wheat,” Turkish J. Agric. For., vol. 30, no. 5, pp. 325–337, 2006, doi: 10.3906/tar-0604-6.

S. K. Tiiennarasu, “On Certain Non-Parametric Procedures For Studying Genotype - Environment Interactions. And Yield Stability,” Indian Agricultural Statistics Research Institute Post- Graduate School, 1995.

M. Huehn, “Nonparametric measures of phenotypic stability. Part 1 : Theory,” 1990.

G. K. Shukla, “Some statistical aspects of partitioning genotype-environmental components of variability,” Heredity (Edinb)., vol. 29, no. 2, pp. 237–245, 1972, doi: 10.1038/hdy.1972.87.

T. Polat, “Farklı Sıra Aralıkları Ve Azot Seviyelerinin Kuru Şartlarda Yetiştirilen Aspir (Carthamus Tinctorius L.) Bitkisinin Verim ve Verim Unsurları Üzerine Etkisi,” 2007.

N. Kunt, “Aspir (Carthamus tinctorius L.)’de Farklı Sıra Üzeri Mesafelerinin ve Yabancı Ot Mücadelesinin Verim ve Kalite Üzerine Etkisi,” Selçuk Üniversitesi Fen Biilimleri Enstitüsü, 2012.

T. R. Francis and L. W. Kannenberg, "Yield stability studies in short-season maize. I. A descriptive method for grouping genotypes," Canadian Journal of Plant Science, 1978, 58.4: 1029-1034.

Eberhart and W. A. Russell, “(1966) Stability Parameters for Comparing Varieties,” no. 3, 1966.

Z. Mut, “Comparison of stability statistics for yield in barley (Hordeum vulgare L.),” African J., vol. 9, no. 11, pp. 1610–1618, 2010, [Online]. Available: http://www.academicjournals.org/Ajb/PDF/pdf2010/15Mar/Mut et al.pdf.

M. Kang, “Modified rank-sum method for selecting high yielding, stable crop genotypes,” Cereal Res. Commun, vol. 19, no. 3, pp. 361–364, 1991.

R. A. Rea, O. De Sousa-Vieira, A. Díaz Lucena, M. Ramón, and R. Briceño Cárdenas, “Genotype by environment interaction and yield stability in sugarcane,” Rev. Fac. Nac. Agron., vol. 70, no. 2, pp. 8129–8138, 2017, doi: 10.15446/rfna.v70n2.61790.

M. J. Moghaddam and S. S. Pourdad, “Comparison of parametric and non-parametric methods for analysing genotype×environment interactions in safflower (Carthamus tinctorius L.),” J. Agric. Sci., vol. 147, p. 601, 2009, doi: 10.1017/S0021859609990050.

N. Sabaghnia, S. H. Sabaghpour, and H. Dehghani, “The use of an AMMI model and its parameters to analyse yield stability in multi-environment trials,” J. Agric. Sci., vol. 146, no. 5, pp. 571–581, 2008, doi: 10.1017/S0021859608007831.

R. Mohammadi and A. Amri, “Comparison of parametric and non-parametric methods for selecting stable and adapted durum wheat genotypes in variable environments,” Euphytica, vol. 159, no. 3, pp. 419–432, 2008, doi: 10.1007/s10681-007-9600-6.

S. Sardouie-Nasab, S. Zareie, A. Saeed Pour, and G. Mohammadi-Nejad, “Genotype × environment interactions for high seed yield and stability in safflower (Carthamus tinctorius L.) genotypes from Iran,” Int. J. Agric. Res. Rev., vol. 3, no. 4, pp. 838–843, 2013, [Online]. Available: http://www.ecisi.com.

M. E. Torbaghan, A. Mirzaee and M. J. Moghaddam, “Analysis of genotype × environment interaction for seed yield in spineless safflower (Carthamus tinctorius L.) genotypes.", Crop Breeding Journal, 2014, vol. 4, no. 1, pp. 47-56.

M. Hamza, “Stability analysis of seed and oil yields in safflower genotypes under divergent environments in Egypt,” Egypt. J. Appl. Sci, 2014, no. 29, pp. 743-757.

F. Gurmu, H. Mohammed, and G. Alemaw, “Genotype x environment interactions and stability of soybean for grain yield and nutrition quality,” African Crop Sci. J., vol. 17, no. 2, 2010, doi: 10.4314/acsj.v17i2.54202.

D. A. Silveira, L. F. Pricinotto, M. Nardino, C. A. Bahry, C. E. C. Prete, and L. Cruz, “Determination of the adaptability and stability of soybean cultivars in different locations and at different sowing times in Paraná state using the AMMI and Eberhart and Russel methods,” Semin. Agrar., vol. 37, no. 6, pp. 3973–3982, 2016, doi: 10.5433/1679-0359.2016v37n6p3973.

M. Kocaturk et al., “GGE biplot analysis of genotype × environment interaction in soybean grown as a second crop,” Turkish J. F. Crop., vol. 24, no. 2, pp. 145–154, 2019, doi: 10.17557/tjfc.615175.

A. T. Goksoy, M. Sincik, M. Erdogmus, M. Ergin, S. Aytac, G. Gumuscu, O. Gunduz, R. Keles, G. Bayram and E. Senyigit, “The parametric and non-parametric stability analyses for interpreting genotype by environment interaction of some soybean genotypes,” Turkish J. F. Crop., vol. 24, no. 1, pp. 28–38, 2019, doi: 10.17557/tjfc.562637.

E. Farshadfar, N. Mahmodi and A. Yaghotipoor, “AMMI stability value and simultaneous estimation of yield and yield stability in bread wheat (Triticum aestivum L.),” Aust. J. Crop Sci., vol. 5, no. 13, pp. 1837–1844, 2011.

B. D. Adewale, C. Okonji, A. A. Oyekanmi, D. A. C. Akintobi and C. O. Aremu, “Genotypic variability and stability of some grain yield components of Cowpea,” African J. Agric. Res., vol. 5, no. 9, pp. 874–880, 2010, doi: 10.5897/AJAR09.481.

M. Anandaraj, D. Prasath, K. Kandiannan, T. J. Zachariah, V. Srinivasan, A. K. Jka, B. K. Singh, A. K. Singh, V. P. Pandey, S. P. Singh, N. Shoba, J. C. Cana, K. R. Kumar and K. U. Maheswari, “Genotype by environment interaction effects on yield and curcumin in turmeric (Curcuma longa L.),” Ind. Crops Prod., vol. 53, pp. 358–364, 2014, doi: 10.1016/j.indcrop.2014.01.005.

##plugins.themes.bootstrap3.article.details##

How to Cite
Subaşı, İlhan, & Başalma, D. (2021). Assessment of Genotype × Environment Interaction of Safflower (Carthamus tinctorius L.) Genotypes by Parametric and Non-Parametric Methods. European Journal of Agriculture and Food Sciences, 3(1), 112-118. https://doi.org/10.24018/ejfood.2021.3.1.233