Assessment of Genotype × Environment Interaction of Safflower (Carthamus tinctorius L.) Genotypes by Parametric and Non-Parametric Methods
##plugins.themes.bootstrap3.article.main##
Genotype-environment interaction is a significant factor for finding and selecting stable and productive varieties in safflower breeding programs. This study was conducted at three locations over two years (2016-2017) to determine the extent of genotype by environment (GE) interaction in seed and oil yield. 20 safflower lines and cultivars were evaluated in terms of stability in 3 environments. Considering the stability and performance, the most suitable genotypes were determined as Remzibey-05 and Genotype-125 in seed yield, Genotype-8 and Genotype-155 in oil yield.
In terms of stability and performances of genotypes, the environment of Ikizce 2017 (E4) was prominent. Correlation analysis among parametric and nonparametric features was given only for seed yield. The following stability parameters were calculated: the coefficient of variation (CV), regression constant (ai), regression coefficient (bi), mean deviation squares from regression (S2di), coefficient of determination (Ri2), stability variance (σi2), ecovalance value (Wi), stability index (Pi) and as nonparametric stability measures Si(1) and Si(2) values. This analysis indicated that seed yield was significantly positively correlated only with Pi (P<0.01). CV showed a positively significant correlation with ai. S2di and ri2 had a positive association with Ri2, σi2, Wi, Pi, Si(1), Si(2), and between each other.
References
-
M. J. Mahasi, R. S. Pathak, F. N. Wachira, T. C. Riungu, M. G. Kinyua, and J. K. Waweru, “Genotype by environment (GxE) interaction and stability in safflower (Carthamus tinctorious L.),” Asian J. Plant Sci., vol. 5, no. 6, pp. 1017–1021, 2006, doi: 10.3923/ajps.2006.1017.1021.
Google Scholar
1
-
A. Ashri and P. F. Knowles, “ Cytogenetics of Safflower (Carthamus L.) Species and Their Hybrids 1 ,” Agron. J., vol. 52, no. 1, pp. 11–17, 1960, doi: 10.2134/agronj1960.00021962005200010004x.
Google Scholar
2
-
P. F. Knowles, “Centers of plant diversity and conservation of crop germ plasm: Safflower,” Econ. Bot., vol. 23, no. 4, pp. 324–329, 1969, doi: 10.1007/BF02860678.
Google Scholar
3
-
Y. Arslan and B. Tarikahya Hacioğlu, “Seed fatty acid compositions and chemotaxonomy of wild safflower (Carthamus L., asteraceae) species in Turkey,” Turkish J. Agric. For., vol. 42, no. 1, pp. 45–54, 2018, doi: 10.3906/tar-1708-68.
Google Scholar
4
-
J. R. Smith, Safflower, Champaign,. AOCS Press, 1996.
Google Scholar
5
-
H. Dajue, L.; Mündel, Safflower, Carthamus tinctorius L. (Vol. 7) 1996. Bioversity International.
Google Scholar
6
-
V. L. Bradley, R. L. Guenthner, R. C. Johnson, and R. M. Hannan, “Evaluation of Safflower Germplasm for Ornamental Use,” no. Table 1, pp. 433–435, 1999.
Google Scholar
7
-
M. M. Karimkhani, R. Shaddel, M. H. H. Khodaparast, M. Vazirian, and S. Piri-Gheshlaghi, “Antioxidant and antibacterial activity of safflower (Carthamus tinctorius L.) extract from four different cultivars,” Qual. Assur. Saf. Crop. Foods, vol. 8, no. 4, pp. 565–574, 2016, doi: 10.3920/QAS2015.0676.
Google Scholar
8
-
H. C. Becker and J. Leon, “Stability analysis in plant breeding,” Plant Breed., vol. 101, pp. 1–23, 1988, doi: 10.1111/j.1439-0523.1988.tb00261.x.
Google Scholar
9
-
C. S. Lin, M. R. Binns, and L. P. Lefkovitch, “Stability Analysis: Where Do We Stand?,” Crop Sci., 1986, doi: 10.2135/cropsci1986.0011183X002600050012x.
Google Scholar
10
-
H. C. Becker, “Correlations among some statistical measures of phenotypic stability,” Euphytica, 1981, doi: 10.1007/BF00038812.
Google Scholar
11
-
Y. Arslan, “Farklı azot ve fosfor seviyelerinin kuru şartlarda yetiştirilen aspir (Carthamus tinctorius L.) bitkisinin verim ve verim özellikleri üzerine etkisi / Effect of different levels of nitrogen and phosphorus on the yield and yield component of safflower", Ankara Ün. Fen Bilimleri Enstitüsü, 2014.
Google Scholar
12
-
M. Bertrand and L. Brühl, “Comparison of Different Methods for the Determination of the Oil Content in Oilseeds,” J. Am. Oil Chem. Soc., vol. 78, no. 1, pp. 95–102, 2001, doi: https://doi.org/10.1007/s11746-001-0226-y.
Google Scholar
13
-
J. Mossé, “Nitrogen to Protein Conversion Factor for Ten Cereals and Six Legumes or Oilseeds. A Reappraisal of Its Definition and Determination. Variation According to Species and to Seed Protein Content,” J. Agric. Food Chem., 1990, doi: 10.1021/jf00091a004.
Google Scholar
14
-
Asia Nosheen, Asghari Bano, “Effect of plant growth promoting rhizobacteria on root morphology of Safflower (Carthamus tinctorius L.),” African J. Biotechnol., vol. 10, no. 59, pp. 12639–12649, 2012, doi: 10.5897/ajb11.1647.
Google Scholar
15
-
Y. Kaya, M. Akçura, and S. Taner, “GGE-Biplot analysis of multi-environment yield trials in bread wheat,” Turkish J. Agric. For., vol. 30, no. 5, pp. 325–337, 2006, doi: 10.3906/tar-0604-6.
Google Scholar
16
-
S. K. Tiiennarasu, “On Certain Non-Parametric Procedures For Studying Genotype - Environment Interactions. And Yield Stability,” Indian Agricultural Statistics Research Institute Post- Graduate School, 1995.
Google Scholar
17
-
M. Huehn, “Nonparametric measures of phenotypic stability. Part 1 : Theory,” 1990.
Google Scholar
18
-
G. K. Shukla, “Some statistical aspects of partitioning genotype-environmental components of variability,” Heredity (Edinb)., vol. 29, no. 2, pp. 237–245, 1972, doi: 10.1038/hdy.1972.87.
Google Scholar
19
-
T. Polat, “Farklı Sıra Aralıkları Ve Azot Seviyelerinin Kuru Şartlarda Yetiştirilen Aspir (Carthamus Tinctorius L.) Bitkisinin Verim ve Verim Unsurları Üzerine Etkisi,” 2007.
Google Scholar
20
-
N. Kunt, “Aspir (Carthamus tinctorius L.)’de Farklı Sıra Üzeri Mesafelerinin ve Yabancı Ot Mücadelesinin Verim ve Kalite Üzerine Etkisi,” Selçuk Üniversitesi Fen Biilimleri Enstitüsü, 2012.
Google Scholar
21
-
T. R. Francis and L. W. Kannenberg, "Yield stability studies in short-season maize. I. A descriptive method for grouping genotypes," Canadian Journal of Plant Science, 1978, 58.4: 1029-1034.
Google Scholar
22
-
Eberhart and W. A. Russell, “(1966) Stability Parameters for Comparing Varieties,” no. 3, 1966.
Google Scholar
23
-
Z. Mut, “Comparison of stability statistics for yield in barley (Hordeum vulgare L.),” African J., vol. 9, no. 11, pp. 1610–1618, 2010, [Online]. Available: http://www.academicjournals.org/Ajb/PDF/pdf2010/15Mar/Mut et al.pdf.
Google Scholar
24
-
M. Kang, “Modified rank-sum method for selecting high yielding, stable crop genotypes,” Cereal Res. Commun, vol. 19, no. 3, pp. 361–364, 1991.
Google Scholar
25
-
R. A. Rea, O. De Sousa-Vieira, A. Díaz Lucena, M. Ramón, and R. Briceño Cárdenas, “Genotype by environment interaction and yield stability in sugarcane,” Rev. Fac. Nac. Agron., vol. 70, no. 2, pp. 8129–8138, 2017, doi: 10.15446/rfna.v70n2.61790.
Google Scholar
26
-
M. J. Moghaddam and S. S. Pourdad, “Comparison of parametric and non-parametric methods for analysing genotype×environment interactions in safflower (Carthamus tinctorius L.),” J. Agric. Sci., vol. 147, p. 601, 2009, doi: 10.1017/S0021859609990050.
Google Scholar
27
-
N. Sabaghnia, S. H. Sabaghpour, and H. Dehghani, “The use of an AMMI model and its parameters to analyse yield stability in multi-environment trials,” J. Agric. Sci., vol. 146, no. 5, pp. 571–581, 2008, doi: 10.1017/S0021859608007831.
Google Scholar
28
-
R. Mohammadi and A. Amri, “Comparison of parametric and non-parametric methods for selecting stable and adapted durum wheat genotypes in variable environments,” Euphytica, vol. 159, no. 3, pp. 419–432, 2008, doi: 10.1007/s10681-007-9600-6.
Google Scholar
29
-
S. Sardouie-Nasab, S. Zareie, A. Saeed Pour, and G. Mohammadi-Nejad, “Genotype × environment interactions for high seed yield and stability in safflower (Carthamus tinctorius L.) genotypes from Iran,” Int. J. Agric. Res. Rev., vol. 3, no. 4, pp. 838–843, 2013, [Online]. Available: http://www.ecisi.com.
Google Scholar
30
-
M. E. Torbaghan, A. Mirzaee and M. J. Moghaddam, “Analysis of genotype × environment interaction for seed yield in spineless safflower (Carthamus tinctorius L.) genotypes.", Crop Breeding Journal, 2014, vol. 4, no. 1, pp. 47-56.
Google Scholar
31
-
M. Hamza, “Stability analysis of seed and oil yields in safflower genotypes under divergent environments in Egypt,” Egypt. J. Appl. Sci, 2014, no. 29, pp. 743-757.
Google Scholar
32
-
F. Gurmu, H. Mohammed, and G. Alemaw, “Genotype x environment interactions and stability of soybean for grain yield and nutrition quality,” African Crop Sci. J., vol. 17, no. 2, 2010, doi: 10.4314/acsj.v17i2.54202.
Google Scholar
33
-
D. A. Silveira, L. F. Pricinotto, M. Nardino, C. A. Bahry, C. E. C. Prete, and L. Cruz, “Determination of the adaptability and stability of soybean cultivars in different locations and at different sowing times in Paraná state using the AMMI and Eberhart and Russel methods,” Semin. Agrar., vol. 37, no. 6, pp. 3973–3982, 2016, doi: 10.5433/1679-0359.2016v37n6p3973.
Google Scholar
34
-
M. Kocaturk et al., “GGE biplot analysis of genotype × environment interaction in soybean grown as a second crop,” Turkish J. F. Crop., vol. 24, no. 2, pp. 145–154, 2019, doi: 10.17557/tjfc.615175.
Google Scholar
35
-
A. T. Goksoy, M. Sincik, M. Erdogmus, M. Ergin, S. Aytac, G. Gumuscu, O. Gunduz, R. Keles, G. Bayram and E. Senyigit, “The parametric and non-parametric stability analyses for interpreting genotype by environment interaction of some soybean genotypes,” Turkish J. F. Crop., vol. 24, no. 1, pp. 28–38, 2019, doi: 10.17557/tjfc.562637.
Google Scholar
36
-
E. Farshadfar, N. Mahmodi and A. Yaghotipoor, “AMMI stability value and simultaneous estimation of yield and yield stability in bread wheat (Triticum aestivum L.),” Aust. J. Crop Sci., vol. 5, no. 13, pp. 1837–1844, 2011.
Google Scholar
37
-
B. D. Adewale, C. Okonji, A. A. Oyekanmi, D. A. C. Akintobi and C. O. Aremu, “Genotypic variability and stability of some grain yield components of Cowpea,” African J. Agric. Res., vol. 5, no. 9, pp. 874–880, 2010, doi: 10.5897/AJAR09.481.
Google Scholar
38
-
M. Anandaraj, D. Prasath, K. Kandiannan, T. J. Zachariah, V. Srinivasan, A. K. Jka, B. K. Singh, A. K. Singh, V. P. Pandey, S. P. Singh, N. Shoba, J. C. Cana, K. R. Kumar and K. U. Maheswari, “Genotype by environment interaction effects on yield and curcumin in turmeric (Curcuma longa L.),” Ind. Crops Prod., vol. 53, pp. 358–364, 2014, doi: 10.1016/j.indcrop.2014.01.005.
Google Scholar
39