##plugins.themes.bootstrap3.article.main##

Fruit syrups or concentrates are sweeteners that are used in food and beverage industry as well as in the pharmaceutical industry. These fruit syrups or juice concentrates are naturally acidic products that are subjected to pasteurization to eliminate the vegetative cells of bacteria, fungi and their less heat resistant spores. There is a chance for heat resistant moulds and Alicyclobacillus spp. to grow in the product after the pasteurization due to the production of heat resistant structures such as ascospores or similar structures and bacterial spores. Byssochlamys, Talaromyces and Neosartorya have been identified frequently as heat resistant moulds in heat processed fruit products. Heat resistant moulds can cause an economical damage to the products by breaking down the texture, producing off flavors, phase separation and causing health hazards due to the ability of mycotoxins formation by some species. In order to detect heat resistant moulds it is necessary to give a selective heat treatment by the laboratory pasteurization to eliminate vegetative cells of bacteria, fungi and less heat resistant fungal spores while stimulation the activation of heat resistant spores formed by heat resistant moulds. Due to the low occurrence of the spores relatively large samples are analyzed. Most of the methods suggest a long incubation period of 30 days to mature the colonies that is too long for quality control measures in food and beverage industry. Impedance monitoring has been suggested as a rapid detection method for the detection of common heat resistant moulds such as Byssochlamys.

References

  1. A. R. M. Ansari, S. J. Mulla, and G. J. Pramod, “Review on artificial sweeteners used in formulation of sugar free syrups,” Int. J. Adv. Pharm., vol. 4, no. 2, pp. 5-9, doi: 10.7439/ijap.
     Google Scholar
  2. W. F. Robertson, “Crushed fruits and syrups,” Master Theses 1911 – Febr. 2014, 1936.
     Google Scholar
  3. M. A. Clarke, “Syrups,” Encyclopedia of Food Sciences, Food Technology and Nutirtion. pp. 5711-5717, 2003, doi: 10.1006/rwos.2001.0047.
     Google Scholar
  4. J. I. Pitt and A. D. Hocking, “Spoilage of stored, processed and preserved foods,” in Fungi and Food Spoilage, 3rd editio., Springer, 2009, ch. 12, pp. 401-421.
     Google Scholar
  5. A. W. S. Ishara, “Isolation and identification of spoilage microbial flora in a commercial pasteurized acidic mixed berry syrup and characterization of their heat resistance,” Department of Microbiology, University of Kelaniya, 2020. “unpublished”.
     Google Scholar
  6. J. Brekke, “Tropical fruit syrups,” Hawaii Agricultural Experiment Station Circular 70, 1968, p. 2.
     Google Scholar
  7. A. Y. Tamime and R. K. Robinson, “Background to manufacturing practice,” in Tamime and Robinson’s Yoghurts, Third edit., A. Y. Tamime and R. K. Robinson, Eds. Woodhead Publishing Limited, 2007, ch. 2, pp. 13-161.
     Google Scholar
  8. D. Mudgil and S. Barak, “Dairy-based functional beverages,” in Milk-Based Beverages, A. M. Grumezescu and A. M. Holban, Eds. Woodhead Publishing, 2019, ch. 3, pp. 67-93.
     Google Scholar
  9. J. H. Irish, M. A. Joslyn, and J. W. Parcella, “Heat penetration in the pasteurizing of syrups and concentrates in glass containers,” Hilgardia, vol. 3, no. 7, pp. 183-206, 1928.
     Google Scholar
  10. J. Dijksterhuis, “Heat-resistant ascospores,” in Food Mycology- A multifaceted Approach to Fungi and Food, J. Dijksterhuis and R. A. Samson, Eds. Boca Raton, FL: CRC Press, 2007, ch. 6, pp. 101-117.
     Google Scholar
  11. R. T. Toledo, R. K. Singh, and F. Kong, “Thermal Process Calculations,” in Fundamentals of Food Process Engineering, 4th edition., D. K. Heldman, Ed. Springer International Publishing AG, 2018, ch. 8, pp. 211-213.
     Google Scholar
  12. R. Hull, “Study of Byssochlamys fulva and control measures in processed fruits,” Ann. Appl. Biol., vol. 26, no. 4, pp. 800-822, 1939.
     Google Scholar
  13. D. R. Fravel and P. B. Adams, “Estimation of United States and world distribution of Talaromyces flavus,” Mycologia, vol. 78, pp. 684-686, 1986, doi: 10.1080/00275514.1986.12025308.
     Google Scholar
  14. N. Scramuzza and E. Berni, “Heat resistance of Hemigera avellnea and Thermoascus crustaceus isolated from pasteurized acid products,” Int. J. Food Microbiol., vol. 168-169, pp. 63-68, 2014, doi: 10.1016/j.ijfoodmicro.2013.10.007.
     Google Scholar
  15. S. Quintavalla and E. Spotti, “Heat resistance of Talaromyces flavus, Neosartorya fischeri and Byssochlamys nivea isolated from fresh fruits,” MAN Microbiologie, aliments, nutrition, vol. 11, no. 3, pp. 335-341, 1993.
     Google Scholar
  16. V. Tournas, “Heat-resistant fungi of importance to the food and beverage industry,” Crit. Rev. Microbiol., vol. 20, pp. 243-263, 1994, doi: 10.3109/10408419409113558.
     Google Scholar
  17. A. D. King, H. D. Michener, and K. A. Ito, “Control of Byssochlamys and related heat-resistant fungi in grape products,” Appl. Microbiol., vol. 18, no. 2, pp. 166-173, 1969, doi: 10.1128/aem.18.2.166-173.1969.
     Google Scholar
  18. J. A. N. Obeta and J. O. Ugwuanyi, “Heat-resistant fungi in Nigerian heat-processed fruit juices,” Int. J. Food Sci. Technol., vol. 30, p. 587-590, 1995.
     Google Scholar
  19. L. R. Beuchat and J. I. Pitt, “Detection and enumeration of heat resistant molds,” in Compendium of methods for the microbiological examination of foods, 3 rd editi., 2001, ch. 21, pp. 251-263.
     Google Scholar
  20. A. S. Sant’Ana, A. Rosenthal, and P. R. Massaguer, “Heat resistance and the effects of continuous pasteurization on the inactivation of Byssochlamys fulva ascospores in clarified apple juice,” J. Appl. Microbiol., vol. 107, pp. 197-209, 2009, doi: 10.1111/j.1365-2672.2009.04195.x.
     Google Scholar
  21. L. R. Beuchat and S. L. Rice, “Byssochlamys spp and their importance in processed fruits,” in Advances in Food Research, vol. 25, Academic Press, 1979, pp. 237-288.
     Google Scholar
  22. M. Olliver and T. Rendle, “Studies on Byssochlamys fulva and its effect on the tissue of processed fruit,” J. Soc. Chem. Ind., vol. 53, pp. 166.
     Google Scholar
  23. P. Kotzekidou, “Byssochlamys,” Encyclopedia of Food Microbiology, vol. 1. pp. 344-350, 2014, doi: 10.1016/B978-0-12-384730-0.00051-3.
     Google Scholar
  24. L. R. Beuchat, “Behaviour of Byssochlamys nivea ascospores in fruit syrups,” Trans. Br. Mycol. Soc., vol. 68, no. 1, pp. 65-71, doi: 10.1016/S0007-1536(77)80153-8.
     Google Scholar
  25. V. N. Scott and D. T. Bernard, “Heat resistance of Talaromyces flavus and Neosartorya fischeri isolated from commercial fruit juices,” J. Food Prot., vol. 50, no. 1, pp. 18-20, 1987.
     Google Scholar
  26. D. F. Splittstoesser, J. M. Lammers, D. L. Downing, and J. J. Churey, “Heat resistance of Eurotium herbariorum, a xerophilic mold,” J. Food Sci., vol. 54, no. 3, pp. 683-685, 1989.
     Google Scholar
  27. S. Sen Chang and D. H. Kang, “Alicyclobacillus spp. in the fruit juice industry: History, characteristics, and current isolation/detection procedures,” Crit. Rev. Microbiol., vol. 30, no. 2, pp. 55-74, doi: 10.1080/10408410490435089.
     Google Scholar
  28. G. Deinhard, P. Blanz, K. Porella, and E. Altan, “Bacillus acidoterrestris sp. nov., a new thermotolearnt acidophile isolated from different soils,” Syst. Appl. Microbiol., vol. 10, pp. 47-53, 1987, doi: 10.1016/S0723-2020(87)80009-7.
     Google Scholar
  29. G. Deinhard, J. Saar, W. Krischke, and K. Poralla, “Bacillus cycloheptanicus sp. nov., a new thermoacidophile containing W-cycloheptane faty acids,” Syst. Appl. Microbiol., vol. 10, pp. 68-73, 1987, doi: 10.1016/S0723-2020(87)80013-9.
     Google Scholar
  30. J. D. Wisotzjsey, P. Jurtshuk, G. E. Fox, G. Deinhard, and K. Poralla, Comparative sequence analyses on the 16s rRNA (rDNA) of Bacillus acidocaldarius, Bacillus acidoterrestris, and Bacillus cycloheptanicus and proposal for creation of a new genus, Alicyclobacillus gen. nov.,” Int. J. Syst. Bacteriol., vol. 42, no. 2, pp. 263-269, 1992.
     Google Scholar
  31. G. Darland and T. D. Brock, “Bacillus acidocaldarius sp. nov., an acidophilic thermophilic spore-forming bacterium,” J. Gen. Microbiol., vol. 67, pp. 9-15, 1971.
     Google Scholar
  32. W. H. Groenewald, P. A. Gouws, and R. C. Witthuhn, “Isolation and identification of species of Alicyclobacillus from orchard soil in the Western Cape, South Africa,” Extremophiles, vol. 12, no. 1, pp. 159-163, 2008, doi: 10.1007/s00792-007-0112-z.
     Google Scholar
  33. P. A. Gouws, L. Gie, A. Pretorius, and N Dhansay, “Isolation and identification of Alicyclobacillus acidocaldarius by 16S rDNA from mango juice and concentrate,” Int. J. Food Sci. Technol., vol. 40, no. 7, pp. 789-792, 2005, doi: 10.1111/j.1365-2621.2005.01006.x.
     Google Scholar
  34. B. Nicolaus, R. Improta, M. C. Manca, L. Lama, E. Esposito, and A. Gambacorta, “Alicyclobacilli from an unexplored geothermal soil in Antarctica: Mount Rittmann,” Polar Biol, vol. 19, pp. 133-141, 1998.
     Google Scholar
  35. M. E. Parish and R. M. Goodrich, “Recovery of presumptive Alicyclobacillus strains from orange,” J. Food Prot., vol. 68, no. 10, pp. 2196-2200, 2005.
     Google Scholar
  36. W. H. Groenewald, P. A. Gouws, and R. C. Witthuhn, “Isolation, identification and typification of Alicyclobacillus acidoterrestris and Alicyclobacillus acidocaldarius strains from orchard soil and the fruit processing environment in South Africa,” Food Microbiol., vol. 26, pp. 71-76, 2009, doi: 10.1016/j.fm.2008.07.008.
     Google Scholar
  37. Y. Wang, T. Yue, Y. Yuan, and Z. Gao, “Isolation and identification of thermo-acidophilic bacteria from orchards in China,” J. Food Prot., vol. 73, no. 2, pp. 390-394, 2010.
     Google Scholar
  38. D. F. Splittstoesser, F. R. Kuss, and W. Harrison, “Enumeration of Byssochlamys and other heat- resistant molds,” Appl. Microbiol., vol. 20, no. 3, pp. 393-397, 1970.
     Google Scholar
  39. D. F. Splittstoesser, M. Wilkinson, and W. Harrison, “Heat activation of Byssochlamys fulva ascospores,” J. Milk Food Technol., vol. 35, no. 7, pp. 399-401, 1972.
     Google Scholar
  40. T. Katan, “Heat activation of dormant ascospores of Talaromyces flavus,” Trans. Br. Mycol. Soc., vol. 84, no. 4, pp. 748-750, 1985, doi: 10.1016/S0007-1536(85)80137-6.
     Google Scholar
  41. L. R. Beuchat, “Extraordinary heat resistance of Talaromyces flavus and Neosartorya fischeri ascospores in fruit products,” J. Food Sci., vol. 51, no. 6, pp. 1506-1510, 1986.
     Google Scholar
  42. A. Douglas King, “Heat resistance of Talaromyces flavus ascospores as determined by a two phase slug flow heat exchanger,” Int. J. Food Microbiol., vol. 35, pp. 147-151, 1997.
     Google Scholar
  43. J. I. Pitt and A. D. Hocking, “Methods for isolation, enumeration and identification,” in Fungi and Food Spoilage, 3rd editio., Springer, 2009, ch. 4, pp. 19-52.
     Google Scholar
  44. D. F. Splittstoesser, “Enumeration of heat resistant mold (Byssochlamys),” in Compendium of methods for the Microbiological examination of foods, Am. Public Health Assoc. Washington, DC, 1976, pp. 230-234.
     Google Scholar
  45. H. M. C. Put, “A selective method for cultivating heat resistant moulds, particularly those of the genus Byssochlamys, and their presence in Dutch soil,” J. appl. Bact., vol. 27, no. 1, pp. 59-64, 1964.
     Google Scholar
  46. D. F. Splittstoesser, F. R. Kuss, W. Harrison, and D. B. Prest, “Incidence of heat resistant molds in Eastern orchards and vineyards,” Appl. Microbiol., vol. 21, no. 2, pp. 335-337, 1971.
     Google Scholar
  47. D. I. Murdock and W. S. Jr. Hatcher, “A simple method to screen fruit juices and concentrates for heat resistant mold,” J. Food Prot., vol. 41, pp. 254-256, 1978.
     Google Scholar
  48. G. Rubin and I. E. Friedman, “Method for detection and identification of low levels of B. fulva asci in fruit juice concentrates,” NY State Agric. Exp. Stn., Geneva, Byssochlamys Semin. Abstr., Res. Circ., vol. 20, pp. 19-20, 1969.
     Google Scholar
  49. F. R. Kuss, “Approaches to a quantitative estimation of B. fulva in raw or processed fruit preparations,” NY State Agric. Exp. Stn., Geneva, Byssochlamys Semin. Abstr., Res. Circ., vol. 20, pp. 9-11, 1969.
     Google Scholar
  50. C. B. Denny and C. K. Brown, “Report on findings with mold types,” NY State Agric. Exp. Stn., Geneva, Byssochlamys Semin. Abstr., Res. Circ., vol. 20, pp. 5-6, 1969.
     Google Scholar
  51. J. C. Canada, “Procedure for the detection and enumeration of heat resistant Byssochlamys ascospores,” NY State Agric. Exp. Stn., Geneva, Byssochlamys Semin. Abstr., Res. Circ., vol. 20, pp. 1-2, 1969.
     Google Scholar
  52. D. T. Maunder, “Spoilage problems caused by molds of the Byssochlamys-Paecilomyces group,” NY State Agric. Exp. Stn., Geneva, Byssochlamys Semin. Abstr., Res. Circ., vol. 20, pp. 12-16, 1969.
     Google Scholar
  53. A. D. K. JR and W. U. Halbrook, “Ascospore heat resistance and control measures for Talaromyces flavus isolated from fruit juice concentrate,” J. Food Sci., vol. 52, no. 5, pp. 1252-1254, 1987.
     Google Scholar
  54. V. Tournas and R. W. Traxler, “Heat resistance of a Neosartorya fischeri strain isolated from pineapple juice frozen concentrate,” J. Food Prot., vol. 57, no. 9, pp. 814-816, 1994.
     Google Scholar
  55. Heat-resistant moulds spore detection patulin-producing moulds species, IFU Method No. 4- April 1996, pp. 8-15.
     Google Scholar
  56. J. I. Pitt and A. D. Hocking, Fungi and food spoilage, 2nd ed., Blackie Academic and Professional, London, 1997, pp. 21-27.
     Google Scholar
  57. J. Houbraken and R. A. Samson, “Standardization of methods for -detecting heat resistant fungi,” in Advances in Food Mycology, A. D. Hocking, J. I. Pitt, and R. A. Samson, Eds. Springer, 2006, pp. 107-112.
     Google Scholar
  58. B. de C. M. Salomao, P. R. Massaguer, and G. M. F. Aragao, “Isolation and selection of heat resistant molds in the production process of apple nectar,” Food Science and Technology, vol. 28, no. 1, pp.116-112, 2008.
     Google Scholar
  59. B. de C. M. Salomao, P. R. Massaguer, and G. M. F. Aragao, “Isolamento e seleção de fungos filamentosos termorresistentes em etapas do processo produtivo de néctar de maçã,” Ciência e Tecnol. Aliment., vol. 28, no. 1, pp. 116–121, 2008.
     Google Scholar
  60. B. D. C. M. Salomão, C. Muller, H. C. do Amparo, and G. M. F. De Aragão, “Survey of molds, yeast and Alicyclobacillus spp. from a concentrated apple juice productive process,” Brizilian J. Microbiol. 45, vol. 1, pp. 49–58, 2014.
     Google Scholar